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This paper presents an empirical and comprehensive forecasting analysis of the uranium price. Prices are
generally difficult to forecast, and the uranium price is not an exception because it is affected by many
external factors, apart from imbalances between demand and supply. Therefore, a systematic analysis of
multiple forecasting methods and combinations of them along repeated forecast origins is a way of
discerning which method is most suitable. Results suggest that i) some sophisticated methods do not
improve upon the Naïve's (horizontal) forecast and ii) Unobserved Components methods are the most
powerful, although the gain in accuracy is not big. These two facts together imply that uranium prices are
undoubtedly subject to many uncertainties.
© 2019 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nuclear power is the largest source of energy with low carbon
dioxide emissions after hydropower [1,2]. Its development can
facilitate programmes to improve energy security and environ-
mental protection. However, this is not often clearly perceived, due
to challenges posed by the high investment costs of power plant
construction, unresolved issues of storage and disposal of nuclear
waste and general public concern for the safety of nuclear power
plants (a disaster such as Fukushima in 2011 remains in the col-
lective memory for a long time) [2].

However, there are other facts that recommend the expansion of
nuclear energy, such as the need to reduce greenhouse gas emis-
sions, the rapid growth in energy demand in developing countries
and the expected rise in fossil fuel prices. These facts make some
uranium unconventional recovery techniques, such as recovery
from phosphate rock or seawater, very relevant to the future of the
nuclear power production [3,4].

In between the pros and cons is the uranium market deciding
the price of uraniumwhich, although representing only up to 3e5%
of the total price of nuclear generated electricity [1,2,5] (5e10%
according to other sources [6]), remains important for the
by Elsevier Korea LLC. This is an
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sustainability of the industry.
The results of market interactions are shown in Fig. 1, that un-

folds the evolution of the monthly spot price, specifically the
‘Uranium NUEXCO Restricted Price, Nuexco exchange spot’
measured in US dollars per pound [7]. It shot up to almost $135/
pound in 2007 due to imbalances between uranium supply and
demand. Since then, prices have always declined with a short
period of growth. The Fukushima disaster in 2011 definitelymarked
a decline in prices.

There are not many studies about uranium price forecasting, the
most recently cited documents are listed in Table 1 (see also ref-
erences cited in these documents). Both time series and Artificial
Intelligence methods focus, by their very nature, on short-term
prediction, only a few months and up to a year in advance.
Methods based on formal models of how future imbalances be-
tween supply and demand will affect prices are often useful in
medium and long-term forecasts.

Two shortcomings, from the point of view of the author, are
common to the previous studies, namely that the final conclusions
are based on forecasts for a single forecasting origin, and they focus
on one single method. This is quite unusual in the forecasting
literature, where the results are usually provided as an average or
any other combination of forecasts estimated across many fore-
casting origins, and the accuracy of the proposed methods are
usually measured against other common alternatives that can serve
as benchmarks. The number of examples is immense and would
www.manaraa.com
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Fig. 1. Monthly uranium price from January 2002 to June 2017.

Table 1
Literature on uranium price forecasting.

Method References

Time series or statistical models [8]
Artificial Intelligence [9e11]
Demand and supply analysis [1,2,12e14]
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roughly include the use of themost typical statistical methods, such
as regression, ARIMA, exponential smoothing or Theta methods
(see, for example [15e18]). Other relevant methods are those that
actually produce a transition between different methods (for
example [19e21] and references therein). Finally, Machine
Learning techniques have flooded the forecasting area with results
that are sometimes strongly questioned by researchers in the field
(e.g. Refs. [22e27]).

This paper continues this tradition by using different methods
on uranium prices to produce short-term forecasts with the ulti-
mate goal of selecting the best option, if there is an absolutewinner.
Methods include Naïve, Autoregressive Integrated Moving Average
(ARIMA), ExponenTial Smoothing (ETS), Unobserved Components
(UC), Theta method, two ANNs and combinations of the above. All
of them are systematically estimated for different forecasting ori-
gins and the results are summarized with two different global
metrics for forecasting horizons ranging from one month to one
year.

As far as the author is concerned, this is the first time that such a
comprehensive analysis of uranium prices has been carried out in
academic literature, both in terms of the number and variety of
methods compared and in terms of the number of forecasting
origins.
2. Forecasting methods

2.1. Benchmark

The typical method that is very often considered as a benchmark
is the so-called Naïve forecast. It consists of projecting the last
available data point in the future. It is actually the optimal forecast
in the particular case of a RandomWalk (RW), a model inwhich the
value of a series at each point in time is the previous one plus a
random noise, generally assumed Gaussian with zero mean and
constant variance. Taking zt as a time series measured in time t and
at as a white noise, a RW obeys the equation zt ¼ zt�1þ at .
2.2. Autoregressive Integrated Moving Average

Since they were popularized in the early 70's by the first edition
of [28], ARIMA models have received a great deal of attention. The
Please cite this article as: D.J. Pedregal, Forecasting uranium prices: So
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formulation of a non seasonal ARIMA ðp; d; qÞ is given in equation
(1), where B is the back-shift operator such that Blzt ¼ zt�l;
qiði¼ 1;2;…; qÞ and fjðj¼ 1;2;…; pÞ are parameters to estimate;
and at is a Gaussian white noise with zero mean and constant
variance.

zt ¼
�
1þ q1Bþ…þ qqBq

��
1þ f1Bþ…þ fpBp

�ð1� BÞd
at (1)

An important issue is the identification procedure to determine
appropriate values of p, d and q for a given data set. Typical iden-
tification tools, such as simple and partial autocorrelation func-
tions, can generally be exploredmanually, but the automatic search
for the optimal model with the help of information criteria, such as
the Akaike Information Criterion or the Bayesian Information Cri-
terion, among others, is a standard nowadays. Two popular ap-
proaches to automatic identification are [29,30], which are
implemented in well-known software pieces, TRAMO and the
forecast package in R, respectively.

2.3. Exponential smoothing

The fundamental principle of exponential smoothing is that
forecasts are constructed as a correction of the last observation by a
weighted average of past forecast errors that decay in an expo-
nential pattern [30]. This particular pattern reflects the fact that
more recent information is more valuable for forecasting the im-
mediate future than older data.

ETS methods were initially used as ad-hoc forecasting tools in
the 1960s [31], although they have recently been cast into a much
more formal statistical framework, with a procedure for automatic
selection of models included, as well as a wider range of models
available. The widespread package in R known as forecast is used in
the case study below and has become a standard when it comes to
ETS methods [30].

As an example, equation (2) shows a common possibility for
non-seasonal time series with an additive level and a slope.

Level : Tt ¼ azt þ ð1� aÞðTt�1 þ bt�1Þ
Slope : bt ¼ bðTt � Tt�1Þ þ ð1� bÞbt�1
Forecast : bztþ1 ¼ Tt þ bt

(2)

2.4. Unobserved Components

Although UC models are often considered with seasonal com-
ponents, they can also be specified without one, as would be the
case with the uranium price; see equation (3) and [32e35].

zt ¼ Tt þ It"
Ttþ1

T�tþ1

#
¼

�
1 1
0 a

�" Tt

T�t

#
þ
"
ht

h�t

#
(3)

Tt and It stand for the trend and irregular components, respectively;
T�t is referred to as the trend ‘slope’, 0<a � 1, ht and h�t are inde-
pendent white noise sequences with variances s2h and s2h� , respec-
tively. Playing with constraints on the parameters different trend
types emerge, like a RW (a ¼ 0; s2h� ¼ 0; T�

1 ¼ 0); RW with drift
(a ¼ 1; s2h� ¼ 0; T�1s0); local linear trend (LLT, a ¼ 1); smoothed
trend (a ¼ 1; sh2 ¼ 0) and damped trend (DT, 0<a<1). The com-
mon assumption about the irregular component is to consider it a
Gaussian random variable.

In this paper, the selection of the best combination of trend and
irregular is done by minimizing the Akaike Information Criterion,
www.manaraa.com
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shown in equation (4), where L� is the likelihood value at the op-
timum and k the number of parameters in the model, i.e., all vari-
ances involved, a in equation (3) and each non-stationary state in
the model [35].

AIC¼ �2lnðL�Þ þ 2k (4)

The key to success is to choose a sufficiently large set of UC
models to look for, so that the approach can model as many
different time series as possible. The set of models to look for are 7,
and are all possible combinations of trends (none, RW, LLT, DT) and
irregular (none or random Gaussian noise) with the exception of
the ‘no trend’ and ‘no irregular’ model.

Note that some of the models above are not considered, strictly
speaking, UC models in the literature. Two examples: i) a RW is
identified with an RW trend with no irregular; and ii) an LLT with
no irregular and s2h� ¼ 0 and T�1s0 is a RW with drift. In this way,
the set of models considered is somewhat broader than the UC
models.

As far as the author is concerned, this is the first time that such a
procedure has been used for UC models.

2.5. Theta method

Theta is an ad-hoc method that was the winner of the M3
forecasting competition [17,36]. It is then an additional benchmark
against which any other method can be compared. Although this
method showed great robustness when applied to many time se-
ries, it does not mean that it is the best when applied to a single
time series.

The model exploits the idea of modifying the local curvatures of
a time series. This is achieved by applying a coefficient (called q) to
the second differences in the time series. The series deflates as theta
approaches zero. In fact, for q ¼ 0 the output is a linear trend and
for q ¼ 1 the output is the same series. However, these are not
necessarily extreme values, since in reality the complete method is
basically based on the combination of the theta lines forecasts with
q ¼ 0 and q ¼ 2 [36].

2.6. Artificial neural networks

Neural networks are models that are constructed as a compo-
sition of layers of interconnected units (neurons) that allow fairly
flexible ways of specifying models in many areas of science. They
have been used extensively in prediction over the last thirty years
with variable success. The results were not conclusive yet, although
a new wave of neural networks is arriving hand in hand with deep
and recurrent neural networks (mainly Long Short Term Memory
nets). However, it is too early to see if they are really useful for
forecasting and, in addition, deep learning techniques make sense
when it is necessary to simultaneously forecast many time series,
which is not the case for this paper.

Two architectures have been tested in the data, namely Multi-
layer Perceptrons (MLP) and Extreme Learning Machines (ELM).
Both have a single hidden layer and the number of neurons is
automatically estimated avoiding overfitting by following the al-
gorithms in Refs. [37,38].

2.7. Combination of methods

There is an extensive literature reporting that the combination
of forecasting methods significantly improves accuracy, see for
example [17,37]. Very often simple combinations are reported as
the most powerful, such as mean and median, see Ref. [39] and
references therein. These possibilities will be studied in the case of
Please cite this article as: D.J. Pedregal, Forecasting uranium prices: So
doi.org/10.1016/j.net.2019.11.028
the uranium price.

3. Results and discussion

In order to compare the performance of all the forecasting
methods listed in the previous section, an experiment consisting on
repeated forecasts has been launched with an initial forecasting
origin set in December 2012 used to fit the designatedmethods. For
each method, forecasts are produced one year ahead and the
forecasting origin is then moved forward one month. Forecasts are
then made again for all methods. This process is repeated until the
end of the sample is reached. In total, 43 rounds of 12-month
forecasts were carried out.

This comprehensive assessment is completed with the help of
two error metrics, namely the symmetrical absolute mean per-
centage error (sMAPE) and the scaled absolute mean error (MASE),
see equations (5) and(6) and [17,40].

sMAPEh ¼h�1
Xh
i¼1

2jzTþi � bzTþij
jzTþij þ jbzTþij

� 100 (5)

MASEh ¼h�1
Xh
i¼1

jzTþi � bzTþij
ðn� 1Þ�1 Pn

r¼2
jzr � zr�1j

(6)

In equations (5) and (6) zt and bzt are the actual and forecast
values at the time t, respectively; T is the forecasting origin; h is the
forecasting horizon (from 1 to 12 in this paper); and n is the
number of observations in the fitting sample. Both metrics have
become the most important in recent forecasting literature,
because they have proven to be very useful in many applications
and are free of some drawbacks [17,40]. The sMAPE metric avoids
distortions of the standard criterion of non-symmetric MAPE and
problems for values close to zero. The MASE metric compares the
out-of-sample performance of the model with the in-sample per-
formance of a simple RW (actually our Naïve method).

Another issue taken into account in this work is whether a Box-
Cox transformation adds any value in terms of prediction due to its
power to stabilize the variance of the series [41]. The trans-
formation is based on the selection of a l parameter, with the limit
case of l ¼ 0 being reduced to a natural logarithmic transformation
according to equation (7). Although very often the logarithm
transformation is chosen arbitrarily (l ¼ 0), rigorous methods are
available, such as maximum likelihood or minimization of the co-
efficient of variation of the transformed series [41,42]. The latter is
used in this document because it is model-independent and can be
properly estimated prior to model identification.

zðlÞ¼

8><>:
zl � 1

l
; if ls0

logðzÞ; if l ¼ 0

(7)

Several packages have been used to calculate model forecasts: R
is used as the base platform for all calculations; ARIMA, ETS and
Theta are estimated by the functions auto. arima, ets and theta,
respectively, of the package forecast [30]; ANNs are estimated with
the nnfor package [38]. UC models deserve special mention, as this
is the first time that an automatic model selection procedure based
on information criteria has been used in a UC context. This software
is developed in Cþþ mounted in R with the help of RcppArmadillo
[43].

Ratios of mean sMAPE errors across all forecasting origins
considered for each method in the previous section with respect to
mean sMAPE of the Naïve method are reported in Table 2 and
www.manaraa.com
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Table 2
Ratios of mean sMAPE measure across all forecast origins for each method over the Naïve mean sMAPE. Bold letters indicate the best model in each row.

Without Box-Cox transformation

h ARIMA AR(1) ETS UC Theta MLP ELM COMB
1 1.048 0.989 0.995 0.943 1.086 1.105 1.035 0.952
2 1.077 0.989 1.019 0.963 1.105 1.145 1.053 0.961
3 1.066 0.985 1.026 0.964 1.102 1.142 1.061 0.967
4 1.049 0.981 1.016 0.960 1.094 1.135 1.072 0.952
5 1.041 0.978 1.005 0.962 1.086 1.140 1.083 0.953
6 1.039 0.976 0.999 0.963 1.079 1.132 1.093 0.953
7 1.036 0.974 0.996 0.964 1.077 1.134 1.104 0.953
8 1.031 0.973 0.998 0.964 1.077 1.142 1.111 0.949
9 1.028 0.972 1.002 0.964 1.077 1.158 1.115 0.947
10 1.027 0.971 1.016 0.964 1.075 1.166 1.118 0.948
11 1.024 0.970 1.035 0.964 1.073 1.177 1.121 0.955
12 1.021 0.969 1.056 0.964 1.071 1.180 1.121 0.967

With Box-Cox transformation

h ARIMA AR(1) ETS UC Theta MLP ELM COMB

1 0.976 0.990 1.000 0.918 1.120 1.049 1.055 0.951
2 0.996 0.984 1.029 0.953 1.131 1.128 1.097 0.982
3 0.997 0.983 1.043 0.954 1.149 1.171 1.131 0.988
4 0.987 0.978 1.036 0.940 1.146 1.198 1.157 0.976
5 0.978 0.975 1.029 0.933 1.140 1.206 1.180 0.968
6 0.976 0.973 1.014 0.931 1.136 1.206 1.201 0.961
7 0.972 0.969 1.009 0.930 1.139 1.213 1.226 0.960
8 0.968 0.967 1.004 0.937 1.144 1.232 1.246 0.961
9 0.963 0.967 0.996 0.949 1.146 1.250 1.260 0.962
10 0.963 0.967 0.991 0.955 1.148 1.280 1.274 0.961
11 0.971 0.966 0.988 0.960 1.150 1.314 1.286 0.959
12 0.982 0.966 0.986 0.959 1.148 1.349 1.291 0.957
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shown graphically in Fig. 2 for forecasting horizons ranging from 1
to 12 months. A column is added for an AR(1) with intercept, which
is the best version of all ARIMA models included in Ref. [8]. In
addition, several combinations of forecasts were tested, and the
table presents only the best of them all, namely the mean of ETS
and UC (under the heading COMB). Values below 1 in Table 2
indicate that a particular method is more accurate than the Naïve
(the smaller the better), while values above 1 imply that the Naïve
is better. Equivalent MASE results are not shown because they were
mostly consistent with sMAPE and are available from the author
upon request. Bold letters indicate the best model for each forecast
horizon (in rows).

Some relevant observations follow:
Fig. 2. Ratio of mean error metrics of all forecasting methods to Naïve. sMAPE on top
panel and MASE on bottom panel.

Please cite this article as: D.J. Pedregal, Forecasting uranium prices: So
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� There are always better methods than Naïve, which implies that
there is some structure in the data that can be modeled by some
of the estimated methods. However, all values are above 0.9 and
many near 1 and above 1. This is clear proof that uranium prices
are quite difficult to predict.

� The lambda parameter of the Box-Cox transformation varies
between �0.53 and �0.3, indicating that the default value of
0 that is often used in practice is inappropriate for uranium
prices. Transformation is useful to induce greater precision in
those methods that are better (with the exception of COMB).
However, in the worst performing methods the Box-Cox trans-
formation does not add any value (Theta, MLP, ELM and ETS).

� The best option in general is the UC using the Box-Cox trans-
formation, which produced improvements between 4.5 and
8.2% over the Naïve, depending on the forecasting horizon. This
is the model that would have produced the best results if it had
been used over time in the experiment.

� The second best is COMB with Box-Cox transformation,
although it is the first when the Box-Cox transformation is not
used. In fact, Table 2 reflects the ambiguity of the forecast
combinations sometimes reported in the literature [39], since in
the upper part of the table the COMB option is often better than
the two models individually (UC and ETS), while in the second
part, one of the methods used in the combination is the best
(UC).

� The results of the ETS method are not good at all. The ETS is
better than the Naïve only in a few cases and by a small margin.
The same can be said of ANNs (both MLP and ELM), poor results
can be attributed to the shortness of time series, as it is well
known that artificial intelligence methods are data hungry.

� ARIMA methods ranks in the middle, since it turned better than
Naïve, ETS, Theta, MLP and ELM methods when Box-Cox trans-
formation is taken into account.

� The AR(1) with intercept proposed in Ref. [8] for quarterly data
is better than ARIMA for automatically identified monthly data
www.manaraa.com
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[30]. This may imply some problems in the ARIMA identification
procedure. This AR(1) model becomes a RW with drift (i.e., zt ¼
zt�1 þ at þ c), because the AR parameter always becomes
smaller than � 0:99, implying that a unit root is dominant.

� Theta method is especially bad. These results contrast with the
excellent results that this method achieved in contexts where
many time series have to be forecast [17]. This result may seem
surprising at first, because in the end the Theta method is
theoretically similar to some of the other methods considered in
this paper. In fact, it can be seen as a moving average of expo-
nential weighting with constant or as an RW with drift and
additional noise. But the problem is that the Theta method is
actually a combination of two ‘theta lines’with predefined fixed
parameters q (0, and 2). This rigidity is clearly not appropriate
for the series in this paper, although it might be suitable for
other series or in contexts with many time series [17].

� Fig. 2 adds some further insights about the observations made
so far, mainly because it visually emphasizes the different
magnitude of the errors. In general, both error metrics produce
the same classification of methods with the exception of the
ARIMA model, which is penalized by the sMAPE. Depending on
the accuracy of the forecasts, two separate groups of methods
can be conceived, namely ANN with Theta on the one hand and
the rest on the other.
4. Conclusions

The aim of this research is to find the best strategy for predicting
uranium prices, based on an experiment that compares nine fore-
casting methods and takes into account the stabilizing trans-
formation of the Box-Cox variance. The conclusions are drawn from
an exhaustive experiment in which the origin of the forecasts is
systematically changed and all models are rigorously tested. The
methods used include some benchmarks, statistical methods and
artificial intelligence methods.

Not all methods outperform the simplest forecasts obtained
with a RW (often called Naïve). As a matter of fact, only ARIMA, UC
and the average of UC and ETS perform better. The best general
method is UC and this should be the method to use in case the
forecasting error wanted to be minimized.

These conclusions apply locally to this time series of uranium
prices. In no way can a general conclusion be drawn about the
performance of the forecasts of any of the methods involved in
other contexts or in other time series. In fact, some of the worst
methods worked very well in forecasting competitions, where
many different time series have to be forecast.

All the methods considered are univariate in nature, which
limits their potential for predicting turning points, such as the
drastic one observed in 2007, or for incorporating the effects of
uranium unconventional recovery techniques, such as recovery
from seawater or phosphate rock. These effects could be imple-
mented with extensions of the previous models to include input
drivers, provided that such useful drivers exist and sufficiently
accurate models can be identified from the data.

Declaration of competing interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the Vicerrectorado de Investigaci�on
Please cite this article as: D.J. Pedregal, Forecasting uranium prices: So
doi.org/10.1016/j.net.2019.11.028
y Política Científica from UCLM through the research group fund
program (PREDILAB; DOCM 24/01/2019 [2019/536]) and by the
European Regional Development Fund. The author would also like
to thank two anonymous referees and the editor for their valuable
comments.
References

[1] D. Cole, The Global Uranium Market, Reserve Bank of Australia, 2015. Reserve
Bank of Australia.

[2] D. Kryzia, L. Gawlik, Forecasting the price of uranium based on the costs of
uranium deposits exploitation, Miner. Resour. Manag. 32 (2016) 93e110.

[3] N. Haneklaus, Y. Sun, B. Roland, B. Lottermoser, E. Schnug, To extract, or not to
extract uranium from phosphate rock, that is the question, Environ. Sci.
Technol. 51 (2) (2017) 753e754. URL 10.1021/acs.est.6b05506.

[4] B. Parker, Z. Zhang, L. Rao, J. Arnold, An overview and recent progress in the
chemistry of uranium extraction from seawater, Dalton Trans. 3 (2018) 1e6.
URL 10.1039/c7dt04058j.

[5] w. Mays, Limitations to progress in developing uranium resources, in: Pro-
ceedings of the 30th Internatio -nal Symposium on Uranium and Nuclear
Energy, World Nuclear Association, 2005, pp. 39e60.

[6] I.A.E. Agency, Uram-2018: ebb and flow d the economics of uranium mining,
accessed: 2019-06-20, https://www.iaea.org/newscenter/news/uram-2018-
ebb-and-flow-the-economics-of-uranium-mining.

[7] International Monetary Fund, Primary commodity prices, accessed: 2019-06-
20, https://www.imf.org/en/Research/commodity-prices.

[8] S. Kim, W. Ko, H. Nam, C. Kim, Y. Chung, S. Bang, Statistical model for fore-
casting uranium prices to estimate the nuclear fuel cycle cost, Nucl. Eng.
Technol. 49 (5) (2017) 1063e1070.

[9] Q. Yan, S. Wang, B. Li, Forecasting uranium resource price prediction by
extreme learning machine with empirical mode decomposition and phase
space reconstruction, Discrete Dynam Nat. Soc. (2014) 1e10, 2014.

[10] J. Chen1, Y. Zhao, Q. Song, Z. Zhou1, S. Yang, Exploration and mining evalu-
ation wywtem and price prediction of uranium resources, Min. Miner. Depos.
12 (2018) 85e94.

[11] J. Chen, Y. Zhao, Q. Song, Z. Zhou, S. Yang, Exploration and mining evaluation
system and price prediction of uranium resources, Min. Miner. Depos. 12
(2018) 85e94.

[12] S. Kahouli, Re-examining uranium supply and demand: new insights, Energy
Policy 39 (2011) 358e376.

[13] M. Dittmar, The end of cheap uranium, Sci. Total Environ. 461e462 (2013)
792e798.

[14] A. Monnet, S. Gabriel, J. Percebois, Long-term availability of global uranium
resources, Resour. Policy 53 (2017) 394e407.

[15] V. G�omez, A. Maravall, Automatic modeling methods for univariate series, in:
A Course in Time Series, John Wiley & Sons, Inc., 2001, pp. 171e201.

[16] R. Hyndman, A.B. Koehler, J.K. Ord, R.D. Snyder, Forecasting with Exponential
Smoothing: the State Space Approach, Springer Science & Business Media,
2008.

[17] S. Makridakis, M. Hibon, The m3-competition: results, conclusions and im-
plications, Int. J. Forecast. 16 (4) (2000) 451e476.

[18] M.A. Villegas, D.J. Pedregal, Automatic selection of unobserved components
models for supply chain forecasting, Int. J. Forecast. 35 (1) (2019) 157e169
(special Section: Supply Chain Forecasting).

[19] K.S. Chan, H. Tong, On estimating thresholds in autoregressive models, J. Time
Ser. Anal. 7 (3) (1986) 179e190.

[20] D. van Dijk, T. Ter€asvirta, P.H. Franses, Smooth transition autoregressive
models - a survey of recent developments, Econom. Rev. 21 (1) (2002) 1e47.

[21] G. Sbrana, A. Silvestrini, Random switching exponential smoothing: a new
estimation approach, Int. J. Prod. Econ. 211 (2019) 211e220.

[22] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Springer Publishing, New York, 2009.

[23] S. Haykin, Neural Networks and Learning Machines, Prentice Hall, New Jersey,
2008.

[24] G. Zhang, Times series forecasting using a hybrid arima and neural network
model, Neurocomputing 50 (2003) 159e175.

[25] H. Zheng, J. Yuan, L. Chen, Short-term load forecasting using emd-lstm neural
networks with a xgboost algorithm for feature importance evaluation, En-
ergies 10 (2017) 1e20.

[26] S. Makridakis, E. Spiliotis, V. Assimakopoulos, Statistical and machine learning
forecasting methods: concerns and ways forward, PLoS One 13 (3) (2018)
1e26, https://doi.org/10.1371/journal.pone.0194889. URL 10.1371/
journal.pone.0194889.

[27] S. Makridakis, E. Spiliotis, V. Assimakopoulos, The m4 competition: results,
findings, conclusion and way forward, Int. J. Forecast. 34 (2018) 802e808.

[28] G.E.P. Box, G.M. Jenkins, G.C. Reinsel, G.M. Ljung, Time Series Analysis: Fore-
casting and Control, fifth ed., John Wiley & Sons, 2015.

[29] V. G�omez, A. Maravall, Automatic modeling methods for univariate series, in:
A Course in Time Series, John Wiley & Sons, Inc., 2001, pp. 171e201.

[30] R.J. Hyndman, Y. Khandakar, Automatic time series forecasting: the forecast
package for R, J. Stat. Softw. 3 (27) (2008) 1e22.

[31] R.G. Brown, Statistical Forecasting for Inventory Control, McGraw-Hill, 1959.
www.manaraa.com
me empirical results, Nuclear Engineering and Technology, https://

http://refhub.elsevier.com/S1738-5733(19)30482-6/sref1
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref1
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref2
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref2
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref2
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref3
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref3
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref3
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref3
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref4
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref4
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref4
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref4
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref5
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref5
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref5
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref5
https://www.iaea.org/newscenter/news/uram-2018-ebb-and-flow-the-economics-of-uranium-mining
https://www.iaea.org/newscenter/news/uram-2018-ebb-and-flow-the-economics-of-uranium-mining
https://www.imf.org/en/Research/commodity-prices
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref8
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref8
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref8
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref8
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref9
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref9
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref9
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref9
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref10
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref10
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref10
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref10
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref11
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref11
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref11
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref11
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref12
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref12
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref12
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref13
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref13
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref13
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref13
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref14
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref14
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref14
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref15
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref15
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref15
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref15
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref15
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref16
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref16
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref16
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref16
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref17
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref17
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref17
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref18
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref18
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref18
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref18
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref19
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref19
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref19
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref20
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref20
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref20
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref20
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref21
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref21
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref21
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref22
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref22
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref23
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref23
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref24
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref24
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref24
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref25
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref25
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref25
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref25
https://doi.org/10.1371/journal.pone.0194889
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref27
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref27
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref27
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref28
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref28
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref28
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref29
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref29
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref29
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref29
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref29
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref30
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref30
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref30
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref31


D.J. Pedregal / Nuclear Engineering and Technology xxx (xxxx) xxx6
[32] A.C. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter,
Cambridge university press, 1989.

[33] P.C. Young, D.J. Pedregal, W. Tych, Dynamic harmonic regression, J. Forecast.
18 (6) (1999) 369e394.

[34] C.J. Taylor, D.J. Pedregal, P.C. Young, W. Tych, Environmental time series
analysis and forecasting with the captain toolbox, Environ. Model. Softw 22
(6) (2007) 797e814.

[35] J. Durbin, S.J. Koopman, Time Series Analysis by State Space Methods, second
ed., Oxford University Press, 2012.

[36] V. Assimakopoulos, K. Nikolopoulos, The theta model: a decomposition
approach to forecasting, Int. J. Forecast. 16 (4) (2000) 521e530.

[37] N. Kourentzes, D. Barrow, S. Crone, Neural network ensemble operators for
time series forecasting, Expert Syst. Appl. 41 (9) (2014) 4235e4244.

[38] N. Kourentzes, Nnfor: time series forecasting with neural networks, r package
Please cite this article as: D.J. Pedregal, Forecasting uranium prices: So
doi.org/10.1016/j.net.2019.11.028
version 0.9.6, URL, https://CRAN.R-project.org/package¼nnfor, 2019.
[39] D.K. Barrow, N. Kourentzes, Distributions of forecasting errors of forecast

combinations: implications for inventory management, Int. J. Prod. Econ. 177
(2016) 24e33.

[40] R. Hyndman, A. Koehler, Another look at measures of forecast accuracy, Int. J.
Forecast. 22 (4) (2006) 679e688.

[41] G.E.P. Box, D.R. Cox, An analysis of transformations, J. R. Stat. Soc. Ser. B 26 (2)
(1964) 211e252.

[42] V.M. Guerrero, Time series analysis supported by power transformations,
J. Forecast. 12 (1) (1993) 37e48.

[43] D. Eddelbuettel, C. Sanderson, Rcpparmadillo: accelerating r with high-
performance cþþ linear algebra, Comput. Stat. Data Anal. 71 (2014)
1054e1063, https://doi.org/10.1016/j.csda.2013.02.005. URL.
www.manaraa.com
me empirical results, Nuclear Engineering and Technology, https://

http://refhub.elsevier.com/S1738-5733(19)30482-6/sref32
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref32
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref33
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref33
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref33
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref34
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref34
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref34
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref34
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref35
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref35
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref36
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref36
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref36
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref37
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref37
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref37
https://CRAN.R-project.org/package&equals;nnfor
https://CRAN.R-project.org/package&equals;nnfor
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref39
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref39
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref39
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref39
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref40
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref40
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref40
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref41
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref41
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref41
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref42
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref42
http://refhub.elsevier.com/S1738-5733(19)30482-6/sref42
https://doi.org/10.1016/j.csda.2013.02.005

	Forecasting uranium prices: Some empirical results
	1. Introduction
	2. Forecasting methods
	2.1. Benchmark
	2.2. Autoregressive Integrated Moving Average
	2.3. Exponential smoothing
	2.4. Unobserved Components
	2.5. Theta method
	2.6. Artificial neural networks
	2.7. Combination of methods

	3. Results and discussion
	4. Conclusions
	Declaration of competing interest
	Acknowledgements
	References


